磁阻随机存取存储器 (MRAM) 是一种非易失性存储器技术,它依赖于两个铁磁层的(相对)磁化状态来存储二进制信息。多年来,出现了不同风格的 MRAM 存储器,使 MRAM 对缓存应用程序和内存计算越来越有吸引力。
在本文中,我们讨论了各种 MRAM 家族成员(包括自旋转移扭矩 (spin-transfer torque :STT)、自旋轨道扭矩 (spin-orbit torque:SOT)、电压控制(VCMA-和 VG-SOT)和domain-wall MRAM的挑战和前景。
不断变化的存储展望
内存是电子系统中的关键组件之一,它可以满足多种需求——从数据存储到缓存、缓冲,以及最近的(内存中)计算。几十年来,内存格局一直没有改变,从缓存到存储都有清晰的层次结构。靠近中央处理器 (CPU) 的快速、易失的嵌入式静态随机存取存储器 (SRAM) 是主要存储器。芯片上还有更高的高速缓存存储器,主要由 SRAM 或嵌入式动态随机存取存储器 (DRAM) 技术制成。
在离 CPU 较远的片外,您将主要发现用于工作存储器的 DRAM 芯片、用于存储的非易失性 NAND 闪存芯片以及用于长期存档应用的磁带。一般来说,距离 CPU 越远的内存越便宜、速度越慢、密度越大且易失性越低。
尽管内存密度有了很大的提高,但所有这些内存都在努力跟上逻辑芯片不断提高的性能和巨大的数据增长率。这推动了对独立和嵌入式应用的替代内存技术的探索。新兴选择范围从缓存级应用的新技术、改进 DRAM 设备的新方法、填补 DRAM 和 NAND 技术之间差距的新兴存储级存储器、改进 3D-NAND 存储设备和存档类型应用的解决方案。这些新兴存储器之一是磁阻随机存取存储器 (MRAM)。