细节数据层(ODS/DWD),它是经过ETL过程以后导入数据仓库的事实表与维度表。ETL过程的中间临时表存入名为etl的Schema,数据仓库的事实表与维度表存入名为dw的Schema。同时,制订命名规范,事实表以dw_fact_xxx命名,如订单事实表dw_fact_order,维度表以dw_dim_xxx命名,如日期维度表dw_dim_date。
紧接着是轻度综合层(MID/DWS),它是在事实表的基础上按照不同维度与粒度形成的聚合表。聚合表以dw_agg_xxx命名,如进项发票按纳税人聚合表dw_agg_jxfp_nsr、进项发票按税务机关聚合表dw_agg_jxfp_swjg等。
最后,是在数据仓库之上的数据集市层(DM),它通过抽取前两层中的事实表与聚合表的数据,按照不同的用户需求进行数据分析,最后形成数据结果。数据集市既包括最终结果表,也包括中间结果表。数据集市以dw_dm_xxx命名,如“购车人未缴纳车辆购置税预警”属于“机动车消费税”分析模块,它需要计算出应免税数据dw_dm_jdcxfs_ms,然后计算出未缴税数据dw_dm_jdcxfs_wjs。大多数常规数据分析就是这样通过SparkSQL进行的。